Detecting Different Types of Directional Land Cover Changes Using MODIS NDVI Time Series Dataset
نویسندگان
چکیده
This study proposed a multi-target hierarchical detection (MTHD) method to simultaneously and automatically detect multiple directional land cover changes. MTHD used a hierarchical strategy to detect both abrupt and trend land cover changes successively. First, Grubbs’ test eliminated short-lived changes by considering them outliers. Then, the Brown-Forsythe test and the combination of Tomé’s method and the Chow test were applied to determine abrupt changes. Finally, Sen’s slope estimation coordinated with the Mann-Kendall test detection method was used to detect trend changes. Results demonstrated that both abrupt and trend land cover changes could be detected accurately and automatically. The overall accuracy of abrupt land cover changes was 87.0% and the kappa index was 0.74. Detected trends of land cover change indicated high consistency between NDVI (Normalized Difference Vegetation Index), change trends from LTS (Landsat Thematic Mapper and Enhanced Thematic Mapper Plus time series dataset), and MODIS (Moderate Resolution Imaging Spectroradiometer) time series datasets with the percentage of samples indicating consistency of 100%. For cropland, trends of millet yield per unit and average NDVI of cropland indicated high consistency with a linear regression determination coefficient of 0.94 (p < 0.01). Compared with other multi-target change detection methods, the changes detected by the MTHD could be related closely with specific ecosystem changes, reducing the risk of false changes in the area with frequent and strong interannual fluctuations.
منابع مشابه
Land Cover Classification Based on Fused Data from GF-1 and MODIS NDVI Time Series
Accurate regional and global information on land cover and its changes over time is crucial for environmental monitoring, land management, and planning. In this study, we selected Fengning County, in China’s Hebei Province, as a case study area. Using satellite data, we generated fused normalized-difference vegetation index (NDVI) data with high spatial and temporal resolution by utilizing the ...
متن کاملAn Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+ Images
Due to technical limitations, it is impossible to have high resolution in both spatial and temporal dimensions for current NDVI datasets. Therefore, several methods are developed to produce high resolution (spatial and temporal) NDVI time-series datasets, which face some limitations including high computation loads and unreasonable assumptions. In this study, an unmixing-based method, NDVI Line...
متن کاملLand Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data
Temporal-related features are important for improving land cover classification accuracy using remote sensing data. This study investigated the efficacy of phenological features extracted from time series MODIS Normalized Difference Vegetation Index (NDVI) data in improving the land cover classification accuracy of Landsat data. The MODIS NDVI data were first fused with Landsat data via the Spa...
متن کاملPhenological Change Detection while Accounting for Abrupt and Gradual Trends in Satellite Image Time Series
A challenge in phenology studies is understanding what constitutes phenological change amidst background variation. The majority of phenological studies have focussed on extracting critical points in the seasonal growth cycle, without exploiting the full temporal detail. The high degree of phenological variability between years demonstrates the necessity of distinguishing long term phenological...
متن کاملTemporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series
The analysis and classification of land cover is one of the principal applications in terrestrial remote sensing. Due to the seasonal variability of different vegetation types, the ability to discriminate different land cover types changes over time. Multi-temporal classification can help to improve the classification accuracies, but different constraints, such as financial restrictions or atmo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016